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Automatically prioritize patients for WGS. NICU, PICU and
specialty clinics provide powerful recruitment points for our
Mendelian disease discovery efforts. However, manually
searching patient medical histories to identify the best candidates
for WGS is a time consuming, cumbersome, and largely ad hoc
process. Automated means to continuously survey a NICU, or
even an entire hospital system for those patients most likely to
have undiagnosed Medelian diseases will improve care, and speed
discovery (Fig. 1). Toward this end, Rady’s Children’s Hospital,
and the U of Utah have begun to explore the possibilities of using
Natural Language Processing tools (NLP) to directly convert
clinic notes and adjunct EHR data into machine readable, Human
Phenotype  Ontology  (HPO)-based patient phenotype
descriptions. HPO-based phenotyping data are highly desirable,
as they provide means for prioritizing patients for WGS (as we
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Figure 1 The MPSE workflow. MPSE provides
automated means for continuous surveillance,
identification, and prioritization of patients with likely
Mendelian diseases for Whole Genome Sequencing
(WGS).

show below) and can be directly combined with WGS data GEM [1], for genetic diagnosis and discovery purposes
Our tool for automatically prioritizing patients for WGS is called MPSE—the Mendelian Phenotype

Search Engine [2,3].

Benchmark dataset. To investigate the feasibility of this sub
aim, we took advantage of a unique dataset made available from
RCIGM, consisting of 1075 Level IV NICU admits, their clinic
notes, and metadata such as age, and gender. 294 of these
children had been selected by RADY’s for WGS; and 84 were
diagnosed with Mendelian diseases. Manual, physician created
HPO descriptions are also available for the 294 children with
WGS, making this dataset an ideal for proof of principle analyses
See [2] for additional details. Validation Dataset. Our validation
dataset is composed of 2965 University of Utah Level-1II NICU
admits, and 35 WGS probands sequenced by the University of
Utah NeoSeq program [5].

Prioritization Benchmarks. As can be seen in Figure 2 , MPSE
is both transportable, and effective—when trained the clinical
notes of sequenced RCIGM probands, MPSE assigns low
prioritization scores to Utah level 3 NICU admits (True
Negatives), but high scores to those Utah probands selected for
sequencing (green) sequencing. See [1] for additional details.
The insert shows a Receiver Operator Characteristic (ROC)
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Figure 2. Automatically identifying probands with
Mendelian phenotypes and prioritizing them for WGS
using NLP-derived HPO phenotype descriptions. Panel
A: distributions of MPSE raw scores for RCHSD
sequenced (red), and RCHSD unsequenced (blue)
probands. Score distributions for Utah NeoSeq (green) and
Utah unsequenced probands (purple). Insert: Receiver
Operator Characteristic (ROC) curve for RCHSD data.
MPSE Scores are -log likelihood ratios.

curve for the RCIGM data (AUC 0.86), indicating that MPSE can effectively prioritize probands for rWGS. The




corresponding AUC for the Utah data was 0.85, essentially identical to the RCIGM result (ROC curve not shown),
indicating that MPSE provides effective means to prioritize probands for WGS.

MPSE can identify Mendelian Disease within hours of NICU admission. Our initial work [2] demonstrated
MPSE’s ability to accurately identify sequencing candidates by aggregating clinical notes across from the entirety
of the patient's NICU stay up until
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present in the EHR at the given
moment. Thus, each patient had a

series of MPSE scores for each day
spent in the NICU from admission to discharge. Longitudinal MPSE scores for diagnostic, non-diagnostic, and
unsequenced patients are shown in Figure 3. By the end of the first day (admission day 0) in the NICU, sequenced
cases already had significantly higher MPSE scores than unsequenced controls (control mean: -48.4; case mean:
-30.6; p=5.4e-10). This trend was consistent and statistically significant throughout the first 30 days post-
admission (data not shown). Additionally, sequenced cases saw greater average daily increases in MPSE score
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and that probands with the hichest MPSE scores

also tend to have diagnosable Mendelian Fig. 4. MPSE works well, regardless of NLP tool. MPSE revalidated using HPO
conditions terms provided by different NLP tools. Note that performance using the Open-
' source tool ClinPhen compares favorably to that of CLiX. Panels A and B display
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Recognizing that licensing a commercial tool can be expensive and time consuming, we recently carried out
additional benchmarks using a variety of open-source tools (Fig 4) [4]. As can be seen, performance is good using
a variety of these NLP tools, with that obtained using ClinPen rivaling CLiX. We have also measured performance
using different subsets of notes and investigated the impact of duplicated notes on MPSE performance, reporting
that the impact of these factors is minimal [2, 3], meaning that simply grabbing every available note works well.

ClinPhen and MPSE are entirely open-source projects, thus barriers to deploy these tools in your health system
is minimal. All that is required is means to retrieve clinic notes from the institution’s EHR database and pass the
notes—even redundant notes to the NLP tool of choice. MPSE will do the rest.

MPSE is now powering the Gene Kids project, a new clinical-research initiative of the Primary Children’s
Hospital Center for Personalized Medicine and the University of Utah made possible by a $9 million grant from
the Warren Alpert foundation and Intermountain Heath Care. Primary Children’s Hospital cares for over 1.7
million children across the Intermountain West, the largest pediatric catchment area in the nation [7]. If MPSE
can do this, it can power your project too.
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